Preference Models and Their Elicitation
and Analysis for Context-Aware Applications

Radostaw Klimek

Abstract. The work concerns building preference models when gathering system
requirements and their formal analysis using the deductive approach. The selected
UML diagrams are used for elicitation of preference models and temporal logic for
their specification and verification. The proposed method makes preference model-
ing more reliable in the phase of requirements engineering. Preference models are
based on predefined patterns. It enables the process of generating logical specifica-
tions for preference models to be automated.

Keywords: context-aware systems, pervasive applications, requirements en-
gineering, preference models, preference patterns, temporal logic, deductive
reasoning.

1 Introduction

Preference modeling and prediction for context-aware applications are crucial in
software engineering. The construction of preference models is particularly impor-
tant in systems related to pervasive and ubiquitous computing. Preference modeling
constitutes a kind of bridge between a support-oriented user and a system which is
able to provide the support. Thus, context-aware systems must adapt their behavior
in response to the user’s needs. The requirements engineering phase seems espe-
cially convenient for elicitation of preference models. Another motivation for the
work is the lack of tools for automatic extraction of logical specifications based on
temporal logic for preference models. The main contribution is automation of the
generation process for logical specifications of preference models. Preference mod-
els are obtained in the process of requirements engineering aimed at, among others,

Radostaw Klimek

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: rklimek@agh.edu.pl

A. Gruca et al. (eds.), Man-Machine Interactions 3, 353
Advances in Intelligent Systems and Computing 242,
DOI: 10.1007/978-3-319-02309-0_ 38, (© Springer International Publishing Switzerland 2014

354 R. Klimek

building preference models through a proposed quasi methodology, which includes
some UML diagrams.

Preference modeling needs formalization and it is discussed in some works, e.g.
fundamental and cited work by Oztiirk et al. [7]. The model of preferences may
be constructed using fuzzy sets, classical logic and many-valued logics. Classical
logic, and particularly rule-based systems, are especially popular, c.f. work by Fong
et al. [4]. Non-classical logics, and especially temporal logic, are less popular. On
the other hand, temporal logic is a well-established formalism for describing the
reactiveness of the system. Typical pervasive applications should be characterized
by reactivity and flexibility in adapting to changes on the user side. These changes
may result from recognized and predefined preferences. Therefore, it seems that this
reason is important enough to include temporal logic in the considerations for pref-
erence models. The temporal approach seems underestimated in preference mod-
eling. Work by van Eijck [2] discusses modal logics for preference and belief. It
concerns theoretical issues. A (very) preliminary version of this work is work [5].
In work [6], state-space reduction using preference models for the agent domain
is discussed. Requirements engineering issues for preference models, as they are
presented in the work, are discussed for the first time.

2 UML Diagrams

Some aspects of UML diagrams, e.g. [8,9], are discussed below. They can be applied
for building a requirements model, however they may also be used for constructing
preference models. The presented point of view covers some well-defined steps and
may constitute a kind of quasi methodology and is shown in Fig. 1. Step by step,
more and more information about the preference model is obtained and in the end of
the procedure, it is also logically analyzed. The use case diagram consists of actors
which create the system’s environment and use cases which are services and func-
tionalities used by actors. The diagram is a rather descriptive technique compared
with the other UML diagrams. Each use case has its scenario which is a brief nar-
rative that describes an expected use of the system. The scenario describes a basic
and possible alternative flows of events. It may describe activities or preferences.
An activity is a computation with its internal structure. From the point of view of
the approach presented here, scenarios may also be used for preference discovery.
The activity diagram enables modeling of activities. It is a graphical representation
of the workflow, showing the flow of control from one activity to another.

More formally, use case diagrams UCD contain many use cases UC which
describe the desired functionality of a system and expected preferences, i.e.
Ucy,...,UG;,...,UC;, where | > 0 is the total number of use cases created during the
modeling phase. Each use case UC; has its own scenario, which identifies its activi-
ties and preferences. Thus, every scenario contains some activities ay, ..., dg, ..., dm,
and some preferences py, ..., pk, ..., pn Where m > 0 and n > 0. The level of formal-
ization presented here, i.e. when discussing use cases and their scenarios, is inten-
tionally not very high. This assumption seems realistic since this is an initial phase

Preference Models and Their Elicitation and Analysis 355

modeling

Preference

5. R easoning process

Formalization

Fig. 1 Preference modeling and analysis

of system development and one of the most important things in this approach is to
identify the activities and preferences when creating scenarios, since these objects
will be used when modeling activity diagrams.

3 Preference Models

Temporal Logic. TL is a valuable formalism, e.g. [3, 10], which has strong applica-
tion for specification and verification of models. It exists in many varieties, however,
considerations in this paper are limited to the Linear Temporal Logic LTL, i.e. logic,
for which the time structure is considered linear. Considerations in this paper are
also limited to the smallest temporal logic, e.g. [1], also known as temporal logic of
the class K.

The preference model proposed in the work is based on predefined patterns. A
pattern is a predefined solution for a special context, which are preference issues.
Preferences form logical rules expressed in temporal logic. Patterns constitute a
kind of primitives and are generally indicated as pat() (parameters are included
in parentheses), where pat is a name of a given pattern. The following patterns
are considered: Branch, SimpleBranch and Sequence, c.f. [5, 6]. The process of the
preference elicitation is the following:

1. use cases and use case diagrams are modeled first; they provide a high level and
functional-oriented description of the system;

2. use case scenarios, carefully written in a text form, are instances of use cases
representing the expected uses of a system; preferences are identified here for
the first time, i.e. p1,..., pn;

356 R. Klimek

3. activity diagrams enable modeling previously identified preferences using prede-
fined patterns.

Patterns of behaviors and preferences can be nested. It follows from the sit-
uation of multi-stage decision-making. A basic set of patterns X is a set of
predefined preference patterns, for example a set of three patterns, i.e. X =
{Branch,SimpleBranch,Sequence}, is considered here. Let us define temporal
properties T1(X) over predefined patterns X. An elementary set of formulas over
atomic formulas a; -, , is denoted pat(a;), or simply pat(), as a set of temporal
logic formulas {fi, ..., f, } such that all formulas are syntactically correct. The set
Branch(fi, f2, f3) = {c(fi) = CLA=OL,~c(fi) = ~CHRACH,O-(AiA (VY
f3))} describes the properties of the Branch pattern and SimpleBranch(f,f>) =
{c(f1) = O fa,mc(fi) = =< f2,0-(f1 A f2)} — of the SimpleBranch pattern. The
set Sequence(f1, f») = {fi = Cf2,0-(f1 A f2)} defines the Sequence pattern. For-
mulas f, f> etc. are atomic formulas for a pattern. They constitute a kind of formal
arguments for a pattern. ¢(f) means that the logical condition associated with activ-
ity f has been evaluated and is satisfied.

The entire preference model can be written in the form of the logical expres-
sion Wi, which is similar to the well-known regular expressions. The goal is to
write preferences in a literal notation which allows to represent complex and nested
structures, c.f. Sequence(Branch(a,b,c),SimpleBranch(d,e)). A sequence of two
branchings is considered, i.e. an ordinary and a simple one. a and d are conditions
in this expression. Individual preferences may belong to a set of preferences R, i.e.
R={ry,ry,...r, }, where every r; is a preference expressed as a single expression. A
set of temporal logic formulas can be generated (extracted) from (complex) logical
expressions. These formulas describe preference properties and their desired behav-
ior. Let us summarize the approach. For every use case UC and its scenario, which
belongs to any use case diagram UCD, some activity diagrams AD are developed.
Preferences ry, ...r, obtained from activity diagrams are modeled using atomic pref-
erences py,...p,, which are identified when building a use case scenario. Preferences
are composed only using the predefined patterns.

Building a logical model for the gathered preferences in the form of temporal
logic formulas enables examination of both semantic contradiction and correctness
of the logical model, according to some properties. The architecture of a system for
automatic inference on preference models is proposed in works [5, 6]. The inputs of
the system are logical expressions R and a predefined set of basic preference patterns
X together with their temporal properties I1(X) which are predefined and fixed. The
output is a logical specification L understood as a set of temporal logic formulas.
The outline of the generation algorithm is as follows:

1. at the beginning, the logical specification is empty, i.e. L = 0;

2. the most nested pattern or patterns of every R are processed first; then, less nested
patterns are processed one by one, i.e. patterns that are located more towards the
outside;

Preference Models and Their Elicitation and Analysis 357

3. if the currently analyzed pattern consists only of atomic formulas, the logical
specification is extended, by summing sets, by formulas linked to the type of the
analyzed pattern pat(), i.e. L= LU pat();

4. if any argument is a pattern itself, then the logical disjunction of all its arguments,
including nested arguments, is substituted in place of the pattern.

The above algorithm refers to similar ideas in work [6]. Examples for the algorithm
are presented in the next section.

The standard taxonomy of system properties includes liveness and safety, which
are adapted here to the domain of preferences:

e liveness means that some preferences might be achieved in the whole preference
model, e.g. Op3 or p; = Ops;

e safety means that some preferences, perhaps a logical combination of a subset,
are avoided, e.g. O—(pa A —py).

where {pi,...,po} are atomic preferences belonging to the entire preference world
identified when preparing use case scenarios.

4 Illustration of the Approach

Let us consider a simple yet illustrative example. The example concerns a bicycle
shop offering internet sales. A typical and sample use case diagram is shown in
Fig. 2. It consists of two actors and three use cases, UC|, UC; and UCs3, modeling
the system for a bike shop.

UC1: Shopping

Seller

UC3: Reporting
Client

Fig. 2 A sample use case diagram “BicycleShopping”

Every use case has its own scenario, c.f. Fig. 3. They contain atomic prefer-
ences which are identified when preparing the scenario. In the case of the UC
scenario the preference refers only to the color of a bike and to its derailleurs.
The scenario identifies atomic preferences: “YellowColor” (or “a” as alias), “Se-
lectYellow” (b), “SelectOther” (c), “DoubleDerailleur” (d), “FrontRearDerailleur”
(e) and “RearDerailleur” (f). In the case of the UC, scenario, the preference refers
to the form of payment and to the delivery method. Card payment and a self pick-
up are preferred. When the bikes are shipped, then a courier company is preferred.

UC1: Shopping

R. Klimek

Scenario: uca: D'e""ery
1. Prepare catalogue Scenario: y L .
1. Prepare “Receipt” for a client

2. “YellowColor”(?) of bike is

X 2. Complete payment depending on
preferred, i.e. “CardPayment”(?), i.e. “PayCard”
“SelectYellow” else (preferred) or “PayBankTransfer”
“SelectOther” color 3. Prepare bike for a client

3. “DoubleDerailleur”(?) for a 4. “SelfPickUp”(?) of a bike is preferred
bike is preferred then then get “Acknowledgement”
5. If not self pick-up then in the case of

select bike with

“FastShipping”(?) choose “Courier”,
which is preferred, else prepare
ordinary “ParcelPost”

Update a store data base

“FrontRearDerailleur” else

at least “RearDerailleur”
4. Calculate the price 6.
5. Update a store data base

Fig. 3 A scenario for the use case UC| “Shopping” (left) and a scenario for the use case
UC; “Delivery” (right)

The scenario contains nested preferences. It also identifies atomic preferences: “Re-
ceipt” (or “g” as alias), “CardPayment” (h), “PayCard” (i), “PayBankTransfer” (j),
“SelfPickUp” (k), “Acknowledgement” (1), “FastShipping” (m), “Courier” (n) and
“ParcelPost” (p). One of the most important things in this phase is to identify pref-
erences when creating scenarios and have general and informal idea about them.
Dynamic aspects of preferences are to be modeled strictly when developing activity
diagrams.

L]

g Recipt
CardPayment
SelectOther

PayCard PayBankTransfer

SelectYellow

<

Acklowledgement

FastShipping

Courier ParcelPost

| |

Fig. 4 An activity diagram AD; for the “Shopping” scenario (left) and an activity diagram
AD; for the “Delivery” scenario (right)

FrontRearDerailleur RearDerailleur

Preference Models and Their Elicitation and Analysis 359

For every use case scenario, an activity diagram is created. The activity diagram
workflow is modeled only using atomic preferences which are identified when build-
ing a use case scenario. Furthermore, workflows are composed only using the pre-
defined design patterns shown in Fig. 4. Nesting of patterns is acceptable. A sample
activity diagram AD; is shown in Fig. 4. It models preferences for the UC; use case
shown in Fig. 2 and activities from the scenario in Fig. 3. It contains a sequence of
two branches. The activity diagram for the UC, scenario is a bit more complex, and
is also shown in Fig. 4. This step completes the phase of modeling preferences.

The next phase performs automatic generation of logical expressions from activ-
ity diagrams. The logical expression for AD is as follows

r1 = Seq(Branch(YellowColor,SelectYellow, Select Other),
Branch(DoubleDerailleur, FrontRearDerailleur, RearDerailleur)) €))

The logical expression for activity diagram AD; is

ry = Seq(Receipt,Seq(Branch(CardPayment , PayCard,
PayBankTransfer),Branch(SeflPickU p,Acknowledgment,
Branch(FastShipping,Courier, Parcel Post)))) 2)

Further steps should include generation of logical specifications for preference
models. These are generated from logical expressions 1 and 2 using the algorithm
presented in the Section 3. (Replacing propositions by Latin letters is a technical
matter and it follows from the limited size of the work.) For example, for the logical
expression 7y, the generation process progresses as follows. For first branch it gives
L={c(a) = CbA-=Cc,~c(a) = ~ObA<Oe,0-(aA (bVe))}. Considering the sec-
ond branch gives L := LU{c(d) = Ce A=Of,—ce(d) = —Ce AO f,0-(d A (eV)}
The sequence of these branches gives L:=LU{(aVbVc) = <C(d VeV f),0-((aV
bvec)A(dVeV f))}. Thus, the final logical specification for ry is L = {c(a) =
ObA=Oc,ne(a) = ~ObAOe,.....O0-((avVbVe)A(dVeV f))} The logical speci-
fication for logical expression r; can be generated in a similar way. When the whole
logical specification is generated, it can by analyzed both for contradiction and for
some properties (liveness, safety), c.f. [5,6].

5 Conclusions

The work presents a new approach to obtaining preference models when gathering
the requirements of the system. Preference models are transformed to logical speci-
fications expressed in temporal logic. That enables formal analysis and verification
of preferences. Further works may include the implementation of the modeler and
the logical specification generation module. It is a key issue for context-aware sys-
tems, which must adapt their behavior in response to the user’s needs.

360 R. Klimek

Acknowledgements. This work has been partially financed by the European Union, Human
Capital Operational Programme, SPIN project no. 502.120.2066/C96.

References

1. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)

2. van Eijck, J.: Yet more modal logics of preference change and belief revision. In: Apt,
K.R., van Rooij, R. (eds.) New Perspectives on Games and Interaction, pp. 81-104. Am-
sterdam University Press (2008)

3. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science, vol. B, pp. 995-1072. Elsevier, MIT Press (1990)

4. Fong, J., Indulska, J., Robinson, R.: A preference modelling approach to support intelli-
gibility in pervasive applications. In: Proceedings of 9th IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM Workshops) - 8th
IEEE Workshop on Context Modeling and Reasoning (CoMoRea 2011), pp. 409—414.
IEEE (2011)

5. Klimek, R.: Temporal preference models and their deduction-based analysis for perva-
sive applications. In: Benavente-Peces, C., Filipe, J. (eds.) Proceedings of 3rd Interna-
tional Conference on Pervasive and Embedded Computing and Communication Systems
(PECCS 2013), pp. 131-134. SciTe Press (2013)

6. Klimek, R., Wojnicki, 1., Ernst, S.: State-space reduction through preference modeling.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zu-
rada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 363-374. Springer,
Heidelberg (2013)

7. Oztiirké, M., Tsoukias, A., Vincke, P.: Preference modelling. In: Figueira, J., Greco, S.,
Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 78,
pp- 27-59. Springer (2005)

8. Pender, T.: UML Bible. John Wiley & Sons (2003)

9. Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling Language Reference Man-
ual, 1st edn. Addison-Wesley (1999)

10. Wolter, F., Wooldridge, M.: Temporal and dynamic logic. Journal of Indian Council of
Philosophical Research 27(1), 249-276 (2011)

