
State-Space Reduction
through Preference Modeling⋆

Radosław Klimek, Igor Wojnicki, and Sebastian Ernst

AGH University of Science and Technology
Department of Applied Computer Science
Al. Mickiewicza 30, 30-059 Kraków, Poland
{rklimek,wojnicki,ernst}@agh.edu.pl

Abstract. Automated planning for numerous co-existing agents, with
uncertainty caused by various levels of their predictability, observability
and autonomy, is a complex task. One of the most significant issues
is related to explosion of the state space. This paper presents a formal
framework which can be used to model such systems and proposes the use
of formally-modeled agents’ preferences as a way of reducing the number
of states. A detailed description of preference modeling is provided, and
the approach is evaluated by examples.

1 Introduction

Automated planning is an active research field, with applications ranging from
motion planning [1], through resource allocation and scheduling, to coordination
of autonomous agents [2]. This paper presents a formal framework which can be
used to model sophisticated systems, featuring heterogenous entities (agents),
characterized by varying levels of autonomy, predictability and observability,
and proposes the use of preferences to reduce the size of the state space.
The paper is organized as follows. Section 2 provides a brief introduction to

automated planning and the state-space representation of planning problems.
Section 3 presents the framework, indicating certain and uncertain knowledge
elements, and provides intuition how this model can be mapped to real-world
cases. Section 4 introduces a formal tool which can be used to model preferences
(or agent constraints) using temporal logic, and Section 5 provides an example
how formally represented preferences can be used to reduce the state space.

2 Motivation and State-of-the-Art

The most general, intuitive definition of planning is that it is the reasoning part
of acting [3]. Planning can be performed by people, either implicitly or explicitly.
Automated planning is a branch of AI which is concerned with computation and
execution of plans by machines.
⋆ This work is supported by the Polish National Science Centre (NCN) grant
2011/01/D/ST6/06146.

L. Rutkowski et al. (Eds.): ICAISC 2013, Part II, LNAI 7895, pp. 363–374, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013

364 R. Klimek, I. Wojnicki, and S. Ernst

A common conceptual model for planning is a state-transition system, also
called discrete-event system. It can be defined as a 4-tuple Σ = (S,A,E, γ) [3,4],
where:

– S = {s1, s2, . . .} is a set of states,
– A = {a1, a2, . . .} is a set of actions,
– E = {e1, e2, . . .} is a set of events,
– γ : S ×A× E → 2S is a state-transition function.

This definition is often used together with a graph model, where states s ∈
S are nodes, and state transitions (given as pairs (a, e), a ∈ A, e ∈ E) are
directed edges. The semantic difference between actions and events is that actions
are applicable to states by the plan executor (if γ(s, a) ̸= ∅), while events are
contingent – they might occur due to the system’s characteristics, and every
event e which takes the system from state s to state s′ must have a corresponding
transition function γ(s, e) = {s′}. In a typical instance of a planning problem,
the system is in some initial state sI ∈ S, and the goal is to take it to one of the
goal states sG ∈ {sG1, sG2, . . .} ⊂ S.
Based on that definition, derivation of a plan consists in finding a sequence of

state transitions which take the system form the initial state to one of the goal
states. Numerous methods can be used here – either “blind” (uninformed) ones,
which do not take the characteristics of the system into account [4, sec. 3.4] or
informed (heuristic) methods, which are especially useful for large state spaces
[5]. Determination of heuristics for domain-independent planning is a problem
which has recently received a lot of attention [6,7,8,9].
The size of the state space and the complexity of the planning process can

grow rapidly, due to several reasons:

1. Partially predictable action (and event) results. If it is unclear which
state the system will be in after an action is taken or an event occurs, the
planner will have to consider all possible outcomes, which may result of a
combinatorial explosion of the search tree.

2. Partially determinable world state. If the world state cannot be fully
observed, the planner needs to assume all possible states which match the
observations.

3. Multiple agents. The size of the state space grows exponentially with the
number of entites (agents), as the local state of an agent can be combined
with almost all states of every other agent. Planing for such a case (multi-
body) is not different than for a single agent though[4].

4. Multi-variant plans. Sometimes, it may be preferable to provide multiple
possible actions to the agent and let it choose the most favorable option.
This is true especially in situations, where the planner’s observations of the
system state are less detailed than (local) observations made by the agents.

In needs to be noted, that the state space is not a Cartesian product of all possible
states. Some states can be unreachable due to world constraints (obstacles) or
agent constraints restricting its behavior. Defining these constrains decreases
planning process complexity.

State-Space Reduction through Preference Modeling 365

3 Considered World

This section presents the general model of a world of coexisting entities and their
supervisor. The entities differ with regard to the following parameters:

– controllability – the extent to which the supervisor may influence the entities;
inversely proportional to the entities’ autonomy,
– predictability – certainty that the entity will act according to the prediction,
either due to its intents or its abilities to fulfill the orders,
– observability – the ability of the supervisor to observe the actions of an entity,
whether autonomous or performed to fulfill an order.

Fig. 1. Knowledge in the world model. Solid lines indicate certain knowledge, while
dashed lines indicate knowledge that is subject to an arbitrary level of uncertainty.

An overview of the knowledge existing in the world and its availability to par-
ticular entities has been presented in Figure 1. The knowledge elements are as
follows:

Global Goal (GG). The desired state of the world, known to the Supervisor,
irrelevant to Agents.

World State (WS). State of other agents (AC, AS, AI) as perceived or in-
ferred by the Agent under consideration.

Agent’s State (AS). Current state of an individual agent, might be known to
the Agent or Supervisor. It is an effect of the agent’s actions, which result
from the Agent’s Intents (AI).

Agent Communications (AM). May occur:

366 R. Klimek, I. Wojnicki, and S. Ernst

– between the Supervisor and the Agent, typically including orders (down-
stream) and order fulfilment acknowledgements (upstream),
– between individual agents, typically including negotiations and knowl-
edge broadcast.

Agent’s Constraints (AC). Limitations of an Agent with regard to actions it
can perform; known to the Agent and the Supervisor.

Agent’s Goal (AG). Goal of an individual Agent. Known to the Agent, might
be known to the Supervisor.

Agent’s Intents (AI). Generated by the Agent based on its goal (AG), re-
ceived orders (subset of AM) and state of other agents (WS).

World Constraints (WC). Known to the Supervisor, may be known (e.g. ob-
served) by the Agent.

Orders, received within AM , are usually plans, often multi-variant ones, i.e.
consisting of more than one path leading to the destination. Since the proposed
model is generic, potential applications regard many different domains, both
abstract and very particular.
For more abstract solutions, multi-agent systems are targeted. These include

problem decomposition and agent scheduling. The issue of problem decomposi-
tion regards subdividing the problem into manageable sub-problems and ascrib-
ing them to given agents. Depending on the nature of the problem, it may be
required to perform subdivision in a planned way. Synthesizing multiple plans
and choosing the optimal or suboptimal one poses a challenge. Similarly, while
managing multiple agents towards reaching a global goal, there is a need to
plan their actions. In such case, the aforementioned issues of controllability, ob-
servability and predictability come to play. Furthermore, in many cases, such
planning should also be multi-variant, especially if communication with some
agents is not reliable.
There are many similarities between pure software multi-agent systems and

real-world applications. One of the cases to be considered here is fleet man-
agement (in terms of a supply chain, consisting of trucks, trains, cargo ships,
etc.). While there might be a well defined goal in existence, which formulates
optimization criteria from the perspective of managing shipments, goals of indi-
vidual agents can fluctuate in time and space. Such fluctuations might be caused
by a wide range of factors, including technical issues with vessels, natural disas-
ters, communication interruptions, or human factor issues.
Search and rescue operations can also be considered here. They form a com-

plex system which includes information about the environment under considera-
tion, rescue teammembers, supporting hardware (such as autonomous search and
mapping robots), domain experts, other personnel (e.g. volunteers), commanding
centers, etc. Since such operations are carried out under extreme variability of
factors regarding the system components, it is not safe to assemble a single plan.
Instead, multiple plans for such cooperative activities should be established to
compensate for lack of controllability, observability or predictability.
Yet another application are team sports, both these performed by humans

(e.g. basketball) or robots (such as RoboCup soccer). The ultimate goal here is

State-Space Reduction through Preference Modeling 367

to win. There are multiple agents (the players) performing actions and carrying
out orders and suggestions and the couch, or programmer, as the supervisor.
Depending whether it is a simulated game, a RoboCup competition or a real
one, the proposed World still holds and expresses the system.

4 Preference Modeling

Preference modeling and choice prediction is crucial in the world of agents. Pref-
erence is an act of selecting something over others possibilities of choice. It is
equivalent to the principle of giving advantages to some options over others. It
also enables customization of the agents’ behavior and preferences could be used
to choose from a multi-variant plan. Decisions of agents require a mechanism
for representing and reasoning about the possible consequences of their choices.
Logical models seem especially appropriate for representing preference models
and their exploration. Flexible models should provide the potential for interpret-
ing preference choices in a way that does not depend on the underlying utility
model.
Preference modeling and preference models need formalization and are dis-

cussed in some works, e.g. work by Öztürk et al. [10]. The preference models
might be constructed using fuzzy sets, classical logic and many-valued logics.
Classical logic, particularly rule-based systems, are especially popular, c.f. [11].
Non-classical logics, especially temporal logic, are less popular here. However, let
us note that temporal logic is a well established formalism for describing system
reactiveness. On the other hand, many applications are characterized by reac-
tivity and flexibility in adapting to changes on the user side. These changes may
result from recognized and predefined preferences which are applied in practice.
The variability and change in valuation of logical statements over time flows
are difficult to describe in classical logic. This is a reason important enough to
include temporal logic in the considerations for preference models. Temporal
logic creates new possibilities for analysis of preferences by going beyond the
static world of classical logic. It also allows to illustrate the dynamic aspect
of preferences which describe situations of preference valuations that vary over
flows of time. The temporal approach seems to be underestimated in preference
modeling. After building a preference model in temporal logic, one can analyze
it using a deductive approach. The goal is searching for contradictions, if any,
in a model. It is also possible to inference about the correctness of preference
objectives.
Temporal Logic TL is a formalism, e.g. [12], which has strong application for

specification and verification of models. It exists in many varieties; however, con-
siderations in this paper are limited to the Linear Temporal Logic LTL, i.e. logic
for which the time structure is considered linear. Considerations in this paper
are limited to the smallest temporal logic, e.g. [13]. This logic is considered a
classical propositional calculus’ extension of axiom !(P ⇒ Q) ⇒ (!P ⇒ !Q)

and inference rule
|−P
|−!P

. The following formulas may be considered as signifi-

cant examples of the minimal temporal logic: LowV oltageDetection ⇒ ♦Alarm,

368 R. Klimek, I. Wojnicki, and S. Ernst

!(Trigger ⇒ ♦Action), ♦Live, !¬(BadEvent) or !¬(Event1 ∧ (Event2 ∨
Event3)), etc.
Semantic tableaux is a decision procedure for checking formula satisfiability.

The method is well known in classical logic, but it can also be applied in modal
and temporal logics [14]. The method is based on formula decompositions. At
each step of a well-defined procedure, formulas are decomposed and have fewer
components since logical connectives are removed. Finding a contradiction in all
branches of the decomposition tree means there are no valuations that satisfy
a formula placed in the root. When all branches of the tree have contradictions,
it means that the inference tree is closed. If the negation of the initial formula
is placed in the root, this leads to the statement that the initial formula is true.
This method has some advantages over the traditional axiomatic approach. In
the classical reasoning approach, starting from axioms, longer and more compli-
cated formulas are generated and derived. Formulas become longer and longer
step by step, and only one of them will lead to the verified formula. The method
of semantic tableaux is characterized by a reversed strategy. The inference struc-
ture is represented by a tree and not by a sequence of formulas. Expansion of
any tree branch may be halted after finding a contradiction. In addition, the
method provides, through so-called open branches of the semantic tree, infor-
mation about the source of an error, if one is found; that is another and very
important advantage of the method. The work [15] shows an example of the
truth tree of the semantic tableaux method for minimal temporal logic.

f1

f2

(a) Sequence

f2

f1

f3

+ –

(b) Branch

f2

f1
+ –

(c) SimpleBranch

Fig. 2. Patterns for preferences

The proposed preference model is based on preference patterns. A pattern
is a predefined solution for a special context of preference issues. Preference
patterns are shown in Fig. 2 and are introduced in the work [15]. Every preference
model, perhaps elicited during the requirements engineering phase, consists only
of these patterns. Preference patterns can be nested and form complex models.
Preferences are in the form of logical rules expressed in temporal logic. Suppose
that well-formed and syntactically correct temporal logic formulas are already
defined, c.f. [12].

State-Space Reduction through Preference Modeling 369

Patterns constitute a kind of primitives. They are indicated as pat(), where pat
is a name of a given pattern, and their parameters, if any, are included in paren-
theses. The following three patterns are considered: Branch, SimpleBranch and
Sequence. They constitute a kind of illustration of the if-then scheme. Pattern
nesting enables projection of a multi-stage decision-making. Say, a basic set of
patterns Σ is a set of temporal logic formulas describing properties of a pattern.
Thus, a set of three patterns, i.e. Σ = {Branch, SimpleBranch, Sequence}, is
considered. Now, let us define temporal properties Π(Σ) over predefined pat-
terns Σ. Hence, set Branch(f1, f2, f3) = {c(f1) ⇒ ♦f2∧¬♦f3,¬c(f1) ⇒ ¬♦f2∧
♦f3,!¬(f1 ∧ (f2 ∨ f3))} describes properties of the Branch pattern and set
SimpleBranch(f1, f2) = {c(f1) ⇒ ♦f2,¬c(f1) ⇒ ¬♦f2,!¬(f1 ∧ f2)} the Sim-
pleBranch pattern. Set Sequence(f1, f2) = {f1 ⇒ ♦f2,!¬(f1 ∧ f2)} defines the
Sequence pattern. Formulas that constitute set for a patterns describe both live-
ness and safety property of a pattern. Formulas f1, f2 etc. are atomic formulas
for a pattern. They are a kind of formal arguments for a pattern. ♦f means
that sometime activity f is completed, i.e. when the token left the activity, i.e.
when the falling edge (or the negative edge) of the activity is transited. c(f)
means that the logical condition associated with activity f has been evaluated
and is satisfied. This logical condition is satisfied when the falling edge is tran-
sited. There is a standard taxonomy of system properties, i.e. liveness and safety,
which are adapted here to the field of preferences:

– liveness means that some preferences might be achieved, if desired, in the
whole preference model, e.g. p1 ⇒ ♦p5 or ♦p4;
– safety means that some preferences, if any, perhaps a logical combination of
a subset of the entire preference world, are avoided; e.g. !¬(p2 ∧¬p6 ∧ p10).

where {p1, ..., p10} is a whole identified preference world.
The entire preference model can be written in the form of logical expressions in

order to write preferences in a concise and literal notation. The logical expression
WL is a structure created using the following rules:

– every elementary set pat(ai), where i > 0 and every ai is an atomic formula,
is a logical expression,
– every pat(Ai), where i > 0 and every Ai is either (a) an atomic formula, or
(b) a logical expression pat(), is also a logical expression.

Any logical expression may represent an arbitrary structure of patterns and an
example of this are the following expressions: Branch(a, SimpleBranch(f, g), c)
and Sequence(Branch(a, b, c), SimpleBranch(d, e)). In the first case, the com-
bination (and nesting) of two branched patterns is considered, a and f are con-
ditions in this expression. In the second case, the sequence of two branched
patterns is considered. Individual preferences expressed as a logical expression
may belong to a set of preferences R, i.e. R = {r1, r2, ...rn}, where every ri is a
preference which is expressed as a single logical expression.
When building a logical model for preferences, two important aspects of a

logical system can be analyzed: (1) semantic contradiction of a model, or (2)

370 R. Klimek, I. Wojnicki, and S. Ernst

correctness of the model due to some properties. Formal verification of properties
for a preference model leads to the analysis of the formula s1 ∧ . . . ∧ sn ⇒ Q,
where Q is a desired property for the preference model {r1, r2, ...rm}.

Modeler

Generator

Prover

Σ,Π(Σ)

R

L

Q
Contr.

Y/N

Fig. 3. Deduction system for preference models

The architecture of a system for automatic inference on preference models is
proposed in Fig. 3. The Modeler module allows to prepare a preference model
using preference patterns shown in Fig. 2. The output of the Modeler are pref-
erence models R expressed as logical expressions. The next module is the Gen-
erator module. The inputs of the Generator are logical expressions R and a
predefined set of basic preference patterns Σ, together with their predefined
temporal properties Π(Σ). The output is a logical specification L understood as
a set of temporal logic formulas. The sketch of the generating algorithm is the
following:

1. At the beginning, the logical specification is empty, i.e. L = ∅;
2. The most nested pattern or patterns are processed first, then, less nested
patterns are processed one by one, i.e. patterns that are located more towards
the outside;

3. If the currently analyzed pattern consists only of atomic formulas, the logical
specification is extended, by summing sets, by formulas linked to the type
of the analyzed pattern pat(), i.e. L = L ∪ pat();

4. If any argument is a pattern itself, then the logical disjunction of all its
arguments, including nested arguments, is substituted in place of the pattern.

The above algorithm refers to similar ideas in work [16]. Let us supplement the al-
gorithm by some examples. The example for the step 3: Seq(p, q), gives L = {p ⇒
♦q,!¬(p ∧ q)} and Branch(a, b, c) gives L = {c(a) ⇒ ♦b ∧ ¬♦c,¬c(a) ⇒ ¬♦b ∧
♦c,!¬(a ∧ (b ∨ c))}. The example for the step 4: Sequence(Branch(a, b, c), d)
leads to L = {c(a) ⇒ ♦b ∧¬♦c,¬c(a) ⇒ ¬♦b∧ ♦c,!¬(a∧ (b∨ c)), (a∨ b∨ c) ⇒
♦d,!¬((a ∨ b ∨ c) ∧ d)}.

State-Space Reduction through Preference Modeling 371

The Prover module works using the semantic tableaux method described
above. The inputs for the Prover include a logical specification L = {s1, ..., sn}
and a query Q which might be a simple temporal logic formula expressing the
desired property for the preference model. (This formula can be introduced using
a simple text editor.) The Prover provides two kinds of answers which originate
from two following cases:

1. Semantic contradiction, i.e. analysis of the formula:

s1 ∧ . . . ∧ sn (1)

2. Correctness of the model due to some properties, i.e. the formal verification
of the formula:

s1 ∧ . . . ∧ sn ⇒ Q (2)

In the case of contradiction, formula 1 is placed in the root of the reference tree
and the information about the semantic contradiction is produced. In the case
of correctness, the negation of the formula 2 is placed in the root of the reference
tree and the Yes/No output is produced.
Let us consider a simple example for the house domain. Preferences can be

aggregated over groups of two objectives. The first one is the monitoring and
alarm system. When danger is detected, a security group or the fire brigade is
called depending on the type of danger; however, in both cases the police is called.
After modeling preferences, one can obtain the following logical expression:

r1 = Sequence(Danger, Sequence(Branch(
Intrusion, SecurityGroup, SimpleBranch(
Fire(FireBrigade)))), Police)

(3)

The second objective is related to the method of house heating. Let us consider
two different intervals of hours. Nights have lower range of temperatures in
contrast to a higher range of temperatures for mornings and afternoons. Finally,
one can obtain:

r2 = Branch(Weekend,Branch(Night1, Lower,
Higher), Branch(Night2, Lower,Higher))

(4)

Thus, P = {Danger, Intrusion, ...,Weekend,Night1, ...} are atomic preferences
which were identified when preparing preference model. Next, R = {r1, r2} are
preferences considered as a set of logical expressions. Finally, the logical spec-
ification L is generated using the algorithms described above with two inputs,
i.e. preferences R and the set of predefined patterns Σ together with related
temporal properties Π(Σ).

5 Examples of State-Space Reduction Cases

Let us consider a fully observable, predictable, and controllable world with given
constraints, the Grid World. Knowledge regarding it is considered as follows,
particular world components given in parentheses refer to Fig. 1.

372 R. Klimek, I. Wojnicki, and S. Ernst

Fig. 4. Initial state of the proposed Grid World

The world is two-dimensional, based on a five by five grid (WC). The agents,
denoted as An can move from one location to another orthogonally only, in accor-
dance with the von Neumann neighborhood: north, south, east and west (WC).
No more than one agent is allowed at a single location. There are four agents
initially located in the corners (AS) (see Fig. 4). There is no inter-agent com-
munication (AM). Each agent’s goal it to get to the diagonally opposite corner
(AG); A1 to (E, 5), A2 to (E, 1), A3 to (A, 1), A4 to (A, 5). Global goal (GG) is
to guide all the agents to their goals corners. Since the world is fully controllable,
the agents’ intents comply with orders given by the supervisor (AM).
Assuming the above, a state consists of information about agent locations,

thus it is a tuple: s = (x1, y1, x2, y2, x3, y3, x4, y4). Assuming that each agent can
be at any location, having 5× 5 grid, cardinality of S, number of states, is given
as:

|S1| = (5 ∗ 5)4 = 390625.

Applying the world constraints (no two agents sharing the same location) reduces
number of states slightly, having a product of arithmetic progression:

|S2| = (5 ∗ 5) ∗ (5 ∗ 5− 1) ∗ (5 ∗ 5− 2) ∗ (5 ∗ 5− 3) = 303600.

Let us now introduce preferences in order to demonstrate how they can reduce
the state space. Some agents suffer from demophobia1 , i.e. avoid being in a crowd.
The consequence of this is an appropriate model of preferences. However, let us
consider the whole world of atomic preferences

P = {Go(N), Go(E), Go(S), Go(W), Crowd(d), ...} (5)

where Go(N) means the agent preference to go North (or East, South, West),
etc. Function Crowd(d) is a Boolean function that tests the presence of the
crowd, where d means a direction North, East, South or West and express the
desired direction for agent.
Let us express the following preference model for an agent. He examines all

directions, and only as a last resort go to fourth direction. Suppose that d is the
current direction which expresses the agent desire and its will.
1 A fear of crowds, masses, or people.

State-Space Reduction through Preference Modeling 373

r1 = Branch(Crowd(d), Branch(Crowd(d + 1),
Branch(Crowd(d + 2), Go(d+ 3), Go(d + 2)), Go(d+ 1)), Go(d))

(6)

After examining all the directions, we go in the last possible one.
If we take the preference described above into account, the state space will be

reduced to at most |S3| = (5∗5)∗(5∗5−3)∗(5∗5−6)∗(5∗5−9) = 167200. Please
note that the number above is the upper bound of the number of states, based
on the assumption that the presence of an agent renders at most three of its
neighboring cells unfavorable for other agents, in order to simplify calculations.
More detailed analysis of all possible combinations has revealed that the ac-

tual number of states fulfilling the above preference is 120576.2 This indicates
significant state reduction compared to |S2| (≈ 60%) and |S1| (≈ 69%). As the
complexity and number of preferences is arbitrary, the deduction system (see
Section 4) can use them to identify states which are unreachable and eliminate
them, thus reducing the state space.

6 Conclusions and Future Work

Planning for multiple entities causes an explosion of the number of states in the
state space. Variations of agent controllability, observability and predictability
add to the problem by introducing belief states and states which would not
otherwise be considered by the supervisor.
The number of states can be reduced by identifying unreachable states, which

in turn can be eliminated from the state space. This can be achieved by defining
and analyzing agent’s preferences. As shown in Section 5, some preferences can
influence the number of states in terms of their reduction.
Moreover, even if states cannot be eliminated from the state space, formally

defined preferences can be useful if the agent receives multi-variant instructions
and needs to decide which path to follow.
Other preferences may not eliminate the possible system states, but can influ-

ence the transitions between them. An intuitive example could be a preference
of an agent not to turn left. While the number of states would not necessarily be
reduced (as one left turn could be compensated by multiple right turns), they
can be used by the planner to prune the search tree, thus reducing its branching
factor.
Future work includes perfecting identification of unreachable states and im-

provement of the formalism used to model preferences, as well as research related
to preference-driven search or planning algorithms and extraction of heuristics
from preference sets.

References

1. Turek, W., Marcjan, R., Cetnarowicz, K.: Software agent systems for improv-
ing performance of multi-robot groups. Fundamenta Informaticae 112(1), 103–117
(2011)

2 Value obtained by means of numerical analysis.

374 R. Klimek, I. Wojnicki, and S. Ernst

2. Cetnarowicz, K.: From algorithm to agent. In: Allen, G., Nabrzyski, J., Seidel, E.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS,
vol. 5545, pp. 825–834. Springer, Heidelberg (2009)

3. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

4. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pear-
son Education (2010)

5. Bonet, B.: Planning as heuristic search. Artificial Intelligence 129(1-2), 5–33 (2001)
6. Keyder, E., Geffner, H.: Trees of shortest paths vs. Steiner trees: Understanding
and improving delete relaxation heuristics. In: Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1734–1749 (2009)

7. Karpas, E., Domshlak, C.: Optimal Search with Inadmissible Heuristics. In: Inter-
national Conference on Automated Planning and Scheduling, pp. 92–100 (2012)

8. Haslum, P.: hm (P)= h1 (Pm): Alternative characterisations of the generalisation
from hmax to hm. In: Proc. ICAPS, vol. 1, pp. 354–357 (2009)

9. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: Whats
the difference anyway. In: Proc. ICAPS, vol. 9 (2009)

10. Öztürk, M., Tsoukiàs, A., Vincke, P.: Preference modelling. In: Figueira, J., Greco,
S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys,
pp. 27–72. Springer, Boston (2005)

11. Fong, J., Indulska, J., Robinson, R.: A preference modelling approach to support
intelligibility in pervasive applications. In: 8th IEEE Workshop on Context Mod-
eling and Reasoning (CoMoRea 2011), Seattle, USA, March 21-25, pp. 409–414.
IEEE (2011)

12. Wolter, F., Wooldridge, M.: Temporal and dynamic logic. Journal of Indian Council
of Philosophical Research XXVII(1), 249–276 (2011)

13. Chellas, B.F.: Modal Logic. Cambridge University Press (1980)
14. d’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J.: Handbook of Tableau
Methods. Kluwer Academic Publishers (1999)

15. Klimek, R.: Temporal preference models and their deduction-based analysis for
pervasive applications. In: Benavente-Peces, C., Filipe, J. (eds.) Proceedings of 3rd
International Conference on Pervasive and Embedded Computing and Communi-
cation Systems (PECCS 2013), Barcelona, Spain, February 19-21, pp. 131–134.
SciTePress (2013)

16. Klimek, R.: Proposal to improve the requirements process through formal verifica-
tion using deductive approach. In: Filipe, J., Maciaszek, L. (eds.) Proceedings of
7th International Conference on Evaluation of Novel Approaches to Software En-
gineering (ENASE 2012), Wrocław, Poland, June 29-30, pp. 105–114. SciTePress
(2012)

	State-Space Reduction through Preference Modeling
	Introduction
	Motivation and State-of-the-Art
	Considered World
	Preference Modeling
	Examples of State-Space Reduction Cases
	Conclusions and Future Work

